TRANSALKYLATION OF AROMATIC HYDROCARBONS BY A METATHESIS CATALYST (WC1₆-C₂H₅AlC1₂)

Léonard HOCKS, A.J. Hubert and Ph. Teyssié Laboratory of Macromolecular Chemistry and Organic Catalysis UNIVERSITE DE LIEGE, SART TILMAN - B. 4000 LIEGE - BELGIQUE. (Received in UK 17 July 1972; accepted for publication 30 July 1972)

Recent publications^{1,2,3)} on the alkylation of benzene and toluene by the $WCl_6-C_2H_5AlCl_2$ system prompt us to report our observations stressing the difference between the behaviour of this metathesis catalyst and that of a simple Lewis acid such as $C_2H_5AlCl_2$ for the alkylation of benzene.

 $C_{2}H_{5}AlCl_{2}$ alone is indeed an effective alkylating reagent^{4,5)} (A), but it gives a mixture of mono-, di- and higher alkylated products, while the WCl_{6} -containing catalyst promotes the formation of monoalkylated derivatives (B); on the other hand, a small but definite difference is observed in the distribution of monoalkylated isomers. Moreover, the catalyst is a highly active species : in most cases, the reaction is complete in a matter of seconds.

Interestingly, small amounts of dialkylated products (7 %) which could be detected after a few seconds disappeared very rapidly. This prompted us to treat, with the metathesis catalyst in benzene, a mixture of mono- and polyalkylated benzenes (prepared from oct-4-ene and benzene with $C_2H_5AlCl_2$ alone as catalyst) : the di- and polyalkylated products disappeared rapidly to form exclusively monoalkylated products (C).

A common feature of these reactions is the subsequent isomerization of the monoalkylated products to give a constant isomeric composition, obtained from oct-1-ene as well as from oct-4-ene; this behaviour is also illustrated by the conversion, under the same conditions, of 2-phenylhexane into a 60 : 40 mixture of 2- and 3-phenylhexane.

3687

Catalyst ^{a)}	Time (minutes)	Monoalkylated Products (x-Phenyloctanes) (%) ^{b)}			Dialkyla- ted	Polyalky- lated
		2-	3-	4		Products (%) ^{b)}
C2H5AlC12 (A)	1-1440	22	18	24	29	7
WC16-C2H5AIC12	0.5	31	32	30	7	-
	1	37	29	34	-	-
(B)	10-1440	42	27	31	-	-
WC16-C2H5AlC12) 0	18	17	20	33	12
	15	24	17	27	25	7
	24	29	20	33	16	2
(c)	45	33	24	35	8	-
	80	40	29	31	-	-
	120	<u></u> կ կ	30	26	-	-

- a) Experimental Conditions : Benzene, 2.10^{-1} mole; oct-4-ene, 10^{-2} mole, WCl₆, 1,5.10⁻⁴ mole; C₂H₅AlCl₂, 6.10⁻⁴ mole; T = 25° C.
- b) \$ of products calculated versus the initial amount of octene, using an internal g.l.c. standard; the different types of alkylated products mentioned in this table account for a quantitative conversion of the initial olefin : the corresponding values were standardized to 100 \$.
- c) In this experiment, oct-4-ene was replaced by alkylated products isolated after 24 hrs from former experiment involving oct-4-ene and $C_{2}H_{5}AlCl_{2}$ alone.

References.

- 1. V.M. KOTHARI, J.J. TAMUZA, Chem. Eng. News, <u>48</u>, 39 (1970)
- 2. V.M. KOTHARI, J.J. TAMUZA, J. Org. Chem., <u>36</u>, (20), 2951 (1971)
- 3. A. UCHIDA, Y. HAMANO, Y. MUKAI, S. MATSUDA, Ind. Eng. Chem., Prod. Res. Devel., Catal. Section <u>10</u> (4), 372 (1971)
- 4. R. WOLOWSKY, N. MAOZ, Israel J. Chem., <u>8</u>, 6p (1970)
- 5. R. WOLOWSKY, N. MAOZ, Z. NIR, Synthesis 2, 656 (1970)